
Tricks of A Truly Lazy SAS Programmer
Chris Toppe, Ph.D.
Independent Sector

I'm not sure where I picked up these tricks, mostly from SUGI and the regional user group
meetings, I guess, over the last 10 years or so. Up till then, I used the manuals, which is a pretty
inefficient way to learn. Then, staring with the first SESUG, I started attending these types of
user events and my ability to do what I wanted really skyrocketed. Here are a collection of little
short cuts and tricks that make my life easier, the kind of things that I need to do over and over
again, and the kind of things I need to do to get what I want. I use them all the time. Maybe
there's something here that'll work for you, too. I've tried to make then short and sweet in the
examples so you can cut and paste if you find something you want to try.

Creating Variables
The first trick is for creating new variables. I
show two kinds: binomials and ranges. The
test data is just that, a small dataset that
let's you see what's happening.

DATA TEMP;
INPUT @1 ID 1. @3GENDER 1. @5
INCOME 5.;
CARDS;
1 1 15000
1 2 36000
2 1 47500
2 2 22000
3 1 51000
3 2 77000
;
RUN;

The first variable I create is a classification
variable that assigns people (observations)
into an income groups of $25,000. To do
this, I divide income by 25,000, take the
integer, and add one. For example, the first
observation has an income of $15,000.
When I divide that by 25,000, I get a number
less than zero, so the integer is 0. I add 1 to
that and get the value of the income class,
INCCLS, as 1. Piece of cake.

The second variable I create is a binomial.
Note the simplicity of the code: one line.
This line of code evaluates the value of the
gender variable. If the value is 1, the new,
binomial variable, MALE, is set to 1. All
other values of gender result in MALE being
set to 0.

The results of the Proc Print® show that
INCCLS and MALE were both created as
needed.

DATA TEMP;
SET TEMP;
INCCLS=(INT(INCOME/25000))+1;
MALE = (GENDER=1);
RUN;

ODS RTF FILE='C:\SESUG_1.DOC';
TITLE "CREATING NEW VARIABLES
THE EASY WAY";
PROC PRINT; RUN;
ODS RTF CLOSE;

ID GENDER INCOME INCCLS MALE

1 1 15000 1 1

1 2 36000 2 0

2 1 47500 2 1

2 2 22000 1 0

3 1 51000 3 1

3 2 77000 4 0

Getting Character Variables
to Align
When I create character variables, I want
them to line-up in some logical order, not
alphabetical order. I do this by leaving
leading blanks in the variable values. Then
when the procedure displays the values in
order, the order is determined by the
number of blanks. Note in the code that
there are no blanks in front of the value

"missing", so it will always be last. The Proc
Print shows that this worked.

DATA TEMP; SET TEMP;

ALPHAINC="MISSING
";
 IF INCCLS = 1 THEN
ALPHAINC=" LESS THAN
$25,000";
ELSE IF INCCLS = 2 THEN
ALPHAINC=" $25,000 TO
$49,999";
ELSE IF INCCLS = 3 THEN
ALPHAINC=" $50,000 TO $74,999
";
ELSE IF INCCLS = 4 THEN
ALPHAINC=" $75,000 TO $99,000
";
 ELSE
ALPHAINC=" $100,000 AND UP
";
RUN;

ODS RTF FILE='C:\SESUG_2.DOC';
PROC FREQ DATA=TEMP;
TABLES ALPHAINC;
RUN;
ODS RTF CLOSE;

ALPHAINC Freq Pct
Cum
Freq

Cum
Pct

LESS THAN $25,000 2 33.33 2 33.33

$25,000 TO $49,999 2 33.33 4 66.67

$50,000 TO $74,999 1 16.67 5 83.33

$75,000 TO $99,000 1 16.67 6 100.00

Getting Totals the Easy Way
You've got to learn Proc SQL®. There are
some things you can do in SQL that are just
painful in base SAS®. This paper will not
teach you SQL, but, again, you can copy
this little program to your program window
and just change the variable and dataset
names to fit your needs.

Find in the code where it says
"SUM(INCOME) AS TOTAL ". This tells
Proc SQL to sum the variable income and
name the result TOTAL (and gives it the
dollar9. format). Next, I create another
variable: (100*INCOME/CALCULATED
TOTAL) and names it PCT (with a 5.2
format). Notice what happens. The first
pass of the data accumulates TOTAL. This
is then remerged back onto the dataset.
Then PCT is calculated. Defining PCT as
being created with a CALCULATED variable
tells SQL not to try to create PCT before the
value of TOTAL is created. The PROC
PRINT shows the values in their formatted
form.

PROC SQL;
CREATE TABLE TEMP AS
 SELECT *, SUM(INCOME) AS TOTAL
FORMAT DOLLAR9.,
 (100*INCOME/CALCULATED TOTAL)
AS TOTAL FORMAT=5.2 AS PCT
 FROM TEMP;
 QUIT;
ODS RTF FILE='C:\SESUG_3.DOC';
PROC PRINT; RUN;
ODS RTF CLOSE;

ID GENDER INCOME INCCLS MALE ALPHAINC TOTAL PCT

1 1 15000 1 1 LESS THAN
$25,000

$248,500 6.04

1 2 36000 2 0 $25,000 TO
$49,999

$248,500 14.49

2 1 47500 2 1 $25,000 TO
$49,999

$248,500 19.11

2 2 22000 1 0 LESS THAN
$25,000

$248,500 8.85

ID GENDER INCOME INCCLS MALE ALPHAINC TOTAL PCT

3 1 51000 3 1 $50,000 TO
$74,999

$248,500 20.52

3 2 77000 4 0 $75,000 TO
$99,000

$248,500 30.99

Subtotals, too
SQL goes even further, letting you do
something that is even more difficult in base
SAS: getting sub-totals and group
percentages. Note the only changes to the
above program (in which the grand total and
overall percentages were created) are the
names of the new variables and the addition
of one statement: "GROUP BY ID;". Now
SQL created sub-totals and group
percentages for each ID group. Proc Print
shows that this worked.

PROC SQL;
CREATE TABLE TEMP AS
 SELECT *, SUM(INCOME) AS
SUBTOTAL FORMAT DOLLAR9.,
 (100*INCOME/CALCULATED
SUBTOTAL) AS SUBPCT FORMAT 5.2,
 FROM TEMP
 GROUP BY ID;
 TITLE "GETTING SUB-TOTALS AND
PERCENTS OF SUB-TOTALS";

QUIT;
ODS RTF FILE='C:\SESUG_4.DOC';
PROC PRINT; RUN;
ODS RTF CLOSE;

ID GENDER INCOME INCCLS MALE ALPHAINC TOTAL PCT
SUB-

TOTAL
SUB-
PCT

PCT-
TOT

1 2 36000 2 0 $25,000 TO
$49,999

$248,500 14.49 $51,000 70.59 20.52

1 1 15000 1 1 LESS THAN
$25,000

$248,500 6.04 $51,000 29.41 20.52

2 1 47500 2 1 $25,000 TO
$49,999

$248,500 19.11 $69,500 68.35 27.97

2 2 22000 1 0 LESS THAN
$25,000

$248,500 8.85 $69,500 31.65 27.97

3 2 77000 4 0 $75,000 TO
$99,000

$248,500 30.99 $128,000 60.16 51.51

3 1 51000 3 1 $50,000 TO
$74,999

$248,500 20.52 $128,000 39.84 51.51

Array Basics
I teach in the graduate school of
Georgetown University supervising original
public policy research. I wish my students,
otherwise very smart people, knew how to
work with arrays. Some work with datasets
that have hundreds of variables and then do
something, like changing a "-9" to a "." in
hundreds of lines of hard code (If VAR1=-9

then VAR1=.; …IF VAR200=-9 then
VAR200=.;). Arrays let you do the same
things to a list if variables.

To demonstrate this, I create a little 3-
observation dataset that has 3 variables, X1-
X3. I then use arrays to create three sets of
new variables. Note that the array name is
not the variable name. That is, the array
ETHEL creates the variables Y1-Y3. The

array processing code refers to the array
names but the program creates the named
variables. In my code, FRED sets up the
initial array with the existing variables X1-
X3. Ethel creates Y1-Y3 as FRED*10, so
when Fred is X1, ETHEL is Y1, so
Y1=X1*10. Likewise, LUCY is ETHYL*10
(and is therefore FRED*100). Unlike SQL,
you can refer to a created variable as it is
created. Note the array RICKY. It uses the
binomial code used in the first example in
this paper. When the remainder (MOD
function) of dividing FRED by 2 is 0, RICKY
(variables A1-A3) have a value of 1. That is,
when FRED is an even number (or 0),
RICKY = 1.

Proc Print shows the values of the variables.
Again, note that the variable names are not
the array names.

DATA TEMP2;
INPUT @1 (X1-X3) (3*2.);

CARDS;
1 2 3
0 1 2
2 3 4
;
RUN;
DATA TEMP2; SET TEMP2;
ARRAY FRED X1-X3;
ARRAY ETHEL Y1-Y3;
ARRAY LUCY Z1-Z3;
ARRAY RICKY A1-A3;
DO OVER FRED;
 ETHEL=FRED*10;
 LUCY=ETHEL*10;
 RICKY=(MOD(FRED,2)=0);
END;
RUN;
ODS RTF FILE='C:\SESUG_5.DOC';
PROC PRINT;
TITLE "ARRAY BASICS";
RUN;
ODS RTF CLOSE;

Obs X1 X2 X3 Y1 Y2 Y3 Z1 Z2 Z3 A1 A2 A3

1 1 2 3 10 20 30 100 200 300 0 1 0

2 0 1 2 0 10 20 0 100 200 1 0 1

3 2 3 4 20 30 40 200 300 400 1 0 1

Random Number Functions
There are just times when I want to test
something and don't want to use real data.
For example, if there is to much variability in
my data to make is useful for a test. To get
around this, I use the random number
functions. In this example, I use the
RANUNI® function which is a random
number between 0 and 1 with a uniform
distribution. That is, any value between 0
and 1 is equally as likely as any other
number. I use the binomial shortcut to
randomly assign the values of MALE and
COLLEGE to each of the five observations
I'm creating. For MALE, there is a 50%
chance that any one observation will get a
value of 1. For COLLEGE, there is a 75%
chance that COLLEGE will be set to 1. I
then use these values to create a value for
the variable INCOME. Proc Print shows the
results. Note that 50% of the observations

are not MALE (which would have been
impossible with an odd number of
obsertations anyway) and that only 40% of
the observations got a value of 1 for
COLLEGE. There is nothing wrong here.
It’s just the luck of the draw, so to speak. If
we'd done this with a larger number of
observations, the percentages would
approach 50% for MALE and 75% for
COLLEGE. You can also look at the
INCOME variable and see how the value of
INCOME was influenced by the values of
MALE and COLLEGE.

DATA TEMP3;
DO I = 1 TO 5;

 MALE=(RANUNI(0) LT .5);
 COLLEGE=(RANUNI(0) LT .75);

INCOME=(100000+(10000*COLLEGE)+(
5000*MALE));

 OUTPUT;
END;
RUN;

ODS RTF FILE='C:\SESUG_6.DOC';
PROC PRINT; RUN;
ODS RTF CLOSE;

I MALE COLLEGE INCOME
1 1 0 105000

2 0 0 100000

3 1 0 105000

4 1 1 115000

5 1 1 115000

TAKING A RANDOM SAMPLE
Another useful way to use a random number
function is making a random sample of your
data. If you are working with a large dataset,
you should consider writing and testing your
code on a small sample of your data. It'll be
faster and easier to understand. With this
code, I take a random 10% sample. There
is no output, just the code.

DATA TEMP; SET SASDATA.OLD;
IF RANUNI(0) LE .1 THEN OUTPUT;
/*A 10% RANDOM SAMPLE*/
RUN;

Proc Means Output
You've just got to get used to working with
Proc Means® or Proc Summary®. The
procedures are identical except that in Proc
Means the default is to create output while
Proc Summary does not. I use Proc Means
with the NOPRINT option to suppress the
output as my interest is in creating an output
dataset that has my results.

I use this methodology more than any other
single SAS procedure. It is the bast way I
know to see how many records I have for
my sub-groups and to visually (not
statistically) examine how they differ.

Using the same 5-observation dataset just
created, I tell the procedure to analyze
INCOME (VAR INCOME;) by the
combinations of MALE and COLLEGE
(CLASS MALE COLLEGE;). I instruct the
procedure to create output (OUTPUT) that
consists of an output dataset named STATS
(OUT=STATS) built using 3 statistics (N=
MEAN= SUM=). The AUTONAME option
tells SAS to name the variables in the output
dataset as a combination of the variable
name (INCOME) and the statistic name (N,
MEAN, SUM). Therefore, in my output
dataset I'll have a variable named, for
example, INCOME_MEAN.

The important thing, however, is to learn
now to read to output, which is shown from
Proc Print.

Look first at the MALE column. The values
are ".", '1', and '2'. In this case, "." does not
mean missing, it means "ignored". The
same us true of the values in the COLLEGE
column. Therefore, the first row of the
output says, "when you ignore the value
MALE and you ignore the value of
COLLEGE, the mean income
(INCOME_MEAN) is $10,800. The second
line shows that the mean income is $10,333
then COLLEGE = 0 and the values of MALE
are ignored, while the third row shows an
average of $11,500 when COLLEGE=1 and
the values of MALE are ignored. I now have
the number of records with non-missing
values (INCOME_N), the average income
(IMCOME_MEAN) and the total
(INCOME_SUM) for all possible
combinations of my classifying variables.

PROC MEANS DATA=TEMP3 NOPRINT;
VAR INCOME;
CLASS MALE COLLEGE;
OUTPUT OUT=STATS N= MEAN= SUM= /
AUTONAME;
RUN;

ODS RTF FILE='C:\SESUG_7.DOC';
PROC PRINT; RUN;
ODS RTF CLOSE;

MALE COLLEGE _TYPE_ _FREQ_ INCOME_N INCOME_Mean INCOME_Sum
. . 0 5 5 108000.00 540000

. 0 1 3 3 103333.33 310000

. 1 1 2 2 115000.00 230000

0 . 2 1 1 100000.00 100000

1 . 2 4 4 110000.00 440000

0 0 3 1 1 100000.00 100000

1 0 3 2 2 105000.00 210000

1 1 3 2 2 115000.00 230000

Putting it All Together
Now let's see how this all falls together.
First, I'll create a yes-no format with blanks
in the format so that the output always stays
in the right order: yes, no, missing. As
before, notice the blanks in the format
values.

PROC FORMAT;
VALUE YNFMT

1 = " YES"
0 = " NO"

 OTHER = "MISSING";

RUN;

Then some data, this time 5,000
observations with some missing data. I get
about half of the observations to be male,
then change the value of MALE to missing
for about 10% of the observations. About
70% of the observations are assigned a 1
for college, with about 10% given a missing
value (but a different 10%). Note that the
calls to RANNUI have different forms, but
they both do the same thing: 10% are
assigned a missing value for MALE and
10% for COLLEGE. Again, not the same
10% are given a missing value for MALE
and COLLEGE, but 10% overall. INCOME
is created using the RANNOR function, a
random distribution function (the bell-shaped
curve). If the person went to college
(COLLEGE = 1) then their income is
increased by 10%. If they are female
(MALE = 0) they get another 10% boost in
their incomes.

DATA ALOT;
DO I = 1 TO 5000;
MALE=(RANUNI(0) LE .5);
IF RANUNI(0) LE .1 THEN MALE=.;
COLLEGE=(RANUNI(0) LE .7);
IF RANUNI(0) GE .9 THEN
COLLEGE=.;
INCOME =
100000+(RANNOR(0)*10000);
IF COLLEGE=1 THEN
INCOME=INCOME*1.1;
IF MALE=0 THEN
INCOME=INCOME*1.1;
OUTPUT;
END;
RUN;

Using Proc Tabulate®
Now we're ready do look at how we can use
the formats to improve the look and
readability of a Proc Tabulate run. First, the
basics. The Proc Tabulate will examine
INCOME within the values of MALE and
COLLEGE. Notice how Proc Tabulate
arranges the table.

ODS RTF FILE='C:\SESUG_8.DOC';
PROC TABULATE DATA=ALOT;
CLASS MALE COLLEGE;
VAR INCOME;
TABLES (MALE ALL),(COLLEGE
ALL)*INCOME*(N*F=COMMA5.
MEAN*F=DOLLAR9.);
RUN;
ODS RTF CLOSE;

COLLEGE

0 1 All

INCOME INCOME INCOME

N Mean N Mean N Mean

MALE

0 637 $109,790 1,494 $121,016 2,131 $117,661

1 598 $100,019 1,381 $110,142 1,979 $107,083

All 1,235 $105,059 2,875 $115,793 4,110 $112,567

The first thing to notice is that the missing
values have not been used. This may or
may not be what you want. Second, notice
the values of MALE and COLLEGE are data
values (0 - 1), not Yes-No. We can fix both
of these.

To get missing values into the table, I add
the MISSING option to the call to Proc
Tabulate. I also use the YNFMT to format
the MALE and COLLEGE variables. The
new table is closer to what I want.

ODS RTF FILE='C:\SESUG_9.DOC';
PROC TABULATE DATA=ALOT MISSING;
CLASS MALE COLLEGE;
VAR INCOME;
TABLES (MALE ALL),(COLLEGE
ALL)*INCOME*(N*F=COMMA5.
MEAN*F=DOLLAR9.);
FORMAT MALE COLLEGE YNFMT.;
RUN;
ODS RTF CLOSE;

COLLEGE

MISSING NO YES All

INCOME INCOME INCOME INCOME

N Mean N Mean N Mean N Mean

MALE

MISSING 42 $102,949 120 $100,259 304 $109,633 466 $106,617

NO 225 $110,420 637 $109,790 1,494 $121,016 2,356 $116,969

YES 199 $100,560 598 $100,019 1,381 $110,142 2,178 $106,487

All 466 $105,536 1,355 $104,634 3,179 $115,204 5,000 $111,438

However, the rows and column values still
appear in the wrong order. What I want is to
have Yes first, No second and Missing last.
To do this all I have to do is add an
ORDER=FORMATTED statement to the call
to Proc Tabulate, keeping the missing
option.

ODS RTF FILE='C:\SESUG_10.DOC';
PROC TABULATE DATA=ALOT
ORDER=FORMATTED MISSING;

CLASS MALE COLLEGE;
VAR INCOME;
TABLES (MALE ALL),(COLLEGE
ALL)*INCOME*(N*F=COMMA5.
MEAN*F=DOLLAR9.);
FORMAT MALE COLLEGE YNFMT.;
TITLE "WITH 'ORDER=FORMATTED'
OPTION";
RUN;
ODS RTF CLOSE;

COLLEGE

YES NO MISSING All

INCOME INCOME INCOME INCOME

N Mean N Mean N Mean N Mean

MALE

YES 1,381 $110,142 598 $100,019 199 $100,560 2,178 $106,487

NO 1,494 $121,016 637 $109,790 225 $110,420 2,356 $116,969

MISSING 304 $109,633 120 $100,259 42 $102,949 466 $106,617

All 3,179 $115,204 1,355 $104,634 466 $105,536 5,000 $111,438

There it is. The values of MALE and
COLLEGE are in the desired order. If I run
this program over again with a different set
of variables, they will still be in this order.
That means I can learn to read this table
once and it will always be read the same
way.

ODS
Did you notice I was using the Output Delivery
SYSTEM® for all the procedures to create the
output for this paper? It really is as simple as it
looks if you're willing to take the SAS defaults
and do a little editing in Word. The call to ODS
is straight forward:

ODS RTF FILE='C:\SESUG_10.DOC';

I open a Rich Text File (RTF) named with a
"DOC" extension so it can be read right into
Microsoft® Word®. After I run the
procedure, I close ODS:

ODS RTF CLOSE;

All I have to do after that is open the
document in Word and copy the table into
the right place in my text. For this paper,
because of the column widths, I did have to
edit come of the tables, but that's pretty
easy to do. Not only does ODS make your
output look better, it also eliminates the time
and errors in creating a table in Word from
scratch.

A Little Macro
Now that we've done all this work, wouldn't it be
nice if we could automate this process of
creating formatted Word output for any
combination of variables. I accomplish that
using just a little of the SAS Macro® language.

First, I call the macro with a name and the input
variables. This tells SAS to expect two variable
names when I call the macro TWOVARS.

%MACRO TWOVARS(VAR1= , VAR2=);

I can now wrote my code using macro
variables in the few places they appear.
First, I'll use them in the ODS file name:

ODS RFT
FILE=C:\&VAR1._&VAR2._TAB.DOC

When I run the macro TWOVARS, the
macro variable names &VAR1 and &VAR2
will be replaced by the variable names used
in the call. For example:

MACRO TWOVARS(VAR1=MALE,
VAR2=COLLEGE)

Resolves to the following ODS file name
upon execution:

ODS RFT
FILE=C:\MALE_COLLEGE_TAB.DOC

Next, I'll put my macro names into the Proc
Tabulate code:

PROC TABULATE DATA=ALOT
ORDER=FORMATTED MISSING;
CLASS &VAR1 &VAR2;
VAR INCOME;
TABLES (&VAR1 ALL),(&VAR2
ALL)*INCOME*(N*F=COMMA5.
MEAN*F=DOLLAR9.);
FORMAT &VAR1 &VAR2 YNFMT.;
RUN;
ODS RTF CLOSE;
%MEND TWOVARS;

With that done, I first have to compile the
Marco, a step that creates no output. That
is, I execute the job from the first Macro
statement %MARCO TWOVARS… to the
%MEND TWOVARS statement. Once
compiled, all I have to do to run Macro is call
it:

MACRO TWOVARS(VAR1=MALE,
VAR2=COLLEGE)

Some things about Macro that may not be
obvious:

• There is no ";" after the call to the
macro.

MACRO TWOVARS(VAR1=MALE,
VAR2=COLLEGE)

• When you use a macro variable in a

name such as the file name in the ODS
statement, you have to put a dot after
the macro variable name so SAS knows
where it ends. The dot is part of the
macro name and therefore is not kept
after it resolves.

•
ODS RFT
FILE=C:\&VAR1._&VAR2._TAB.DOC

* *
resloves to:

ODS RFT
FILE=C:\MALE_COLLEGE_TAB.DO

And that's it for this time. I hope you found
something useful here and that you see the value
in attending meetings like this one. There are all
kinds of tricks and shortcuts, so make an effort to
learn a few. If you program like I do -- all the
time -- then being a little lazy is a good thing.

About the Author
Chris Toppe is Director of Philanthropic Studies at Independent Sector. In this role he manages the
collection, analysis, and reporting of data on the charitable activities of Americans. His focus is on
uncovering facts and findings that are useful to practitioners and policy makers. Chris also teaches in the
graduate school of Georgetown University where he supervises original research for graduate students
enrolled in the Georgetown Public Policy Institute. Chris has been using SAS since the 1980s and has
presented papers at over two dozen local, regional, and SUGI conferences. Contact Information: Chris
Toppe, Ph.D. Director, Philanthropic Studies, Independent Sector, 1200 18th Street, NW, Suite 200,
Washington, DC 20036 202.467.6115 (office) 202.467.6101 (fax) chris@IndependentSector.org.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA Registration.

